155 research outputs found

    Light dependence of calcium and membrane potential measured in blowfly photoreceptors in vivo

    Get PDF
    Light adaptation in insect photoreceptors is caused by an increase in the cytosolic Ca2+ concentration. To better understand this process, we measured the cytosolic Ca2+ concentration in vivo as a function of adapting light intensity in the white-eyed blowfly mutant chalky. We developed a technique to measure the cytosolic Ca2+ concentration under conditions as natural as possible. The calcium indicator dyes Oregon Green 1, 2, or 5N (Molecular Probes, Inc., Eugene, OR) were iontophoretically injected via an intracellular electrode into a photoreceptor cell in the intact eye; the same electrode was also used to measure the membrane potential. The blue-induced green fluorescence of these dyes could be monitored by making use of the optics of the facet lens and the rhabdomere waveguide. The use of the different Ca2+-sensitive dyes that possess different affinities for Ca2+ allowed the quantitative determination of the cytosolic Ca2+ concentration in the steady state. Determining the cytosolic Ca2+ concentration as a function of the adapting light intensity shows that the Ca2+ concentration is regulated in a graded fashion over the whole dynamic range where a photoreceptor cell can respond to light. When a photoreceptor is adapted to bright light, the cytosolic Ca2+ concentration reaches stable values higher than 10 mu M. The data are consistent with the hypothesis that the logarithm of the increase in cytosolic Ca2+ concentration is linear with the logarithm of the light intensity. From the estimated values of the cytosolic Ca2+ concentration, we conclude that the Ca2+-buffering capacity is limited. The percentage of the Ca2+ influx that is buffered gradually decreases with increasing Ca2+ concentrations; at cytosolic Ca2+ concentration levels above 10 mu M, buffering becomes minimal

    One Rhodopsin per Photoreceptor: Iro-C Genes Break the Rule

    Get PDF
    While photoreceptors usually contain a single type of rhodopsin, two rhodopsins are sometimes expressed. This bi-allelic expression appears to be under genetic control, an example of which is discussed in this Primer

    Biophotonics of diversely coloured peacock tail feathers

    Get PDF
    Peacock feathers feature a rich gamut of colours, created by a most sophisticated structural colouration mechanism. The feather barbules contain biophotonic structures consisting of two-dimensionally-ordered lattices of cylindrical melanosomes and air channels embedded in keratin. Here, we study the reflectance characteristics of the various peacock tail feather colours by applying bifurcated-probe- and micro-spectrophotometry and imaging scatterometry. We compare the experimental results with published anatomical SEM and TEM data, using a transfer-matrix based effective-medium multilayer model that includes the number and diameter of the melanosome rodlets and air channels, the lattice spacing and the keratin cortex thickness, together with the recently determined wavelength-dependence of the refractive indices of keratin and melanin. Slight variations in the parameter values cause substantial changes in the spectral position and shape of the reflectance bands. We find that the number of layers crucially determines the number of peaks in the reflectance spectra. For a small number of melanosome layers, the reflectance band shape is particularly sensitive to the properties of the uppermost layer, which provides a simple mechanism for tuning the feather colours. This journal i

    Polymorphism of Colias croceus from the Azores caused by differential pterin expression in the wing scales

    Get PDF
    The pierid butterfly Colias croceus (Geoffroy in Fourcroy, 1785), established in the Azores archipelago, is polymorphic with six forms, C. croceus f. croceus ā™‚ and ā™€, C. c. f. cremonae ā™‚ and ā™€, C. c. f. helice ā™€, and C. c. f. cremonaehelice ā™€. We investigated the optical mechanisms underlying the wing colouration of the butterflies by performing spectrophotometry and imaging scatterometry of the variously coloured wing areas and scales. The scale colouration is primarily due to wavelength-selective absorption of incident light by pterins expressed in granular beads in the wing scales, but thin film reflections of the scalesā€™ lower lamina and scale stacking also contribute. Three forms (croceus ā™‚ and ā™€ and helice ā™€) are consistent with the patterns of the well-known ā€˜albaā€™ polymorphism. We postulate the coexistence of a second polymorphism, ā€˜cremonaeā€™, to understand the three other forms (cremonae ā™‚ and ā™€, and cremonaehelice ā™€), which are characterized by the absence of red pigment, presumably due to the differential blocking of erythropterin expression.</p

    Coloration of the Chilean Bellflower, <i>Nolana paradoxa</i>, interpreted with a scattering and absorbing layer stack model

    Get PDF
    An absorbing-layer-stack model allows quantitative analysis of the light flux in flowers and the resulting reflectance spectra. It provides insight in how plants can optimize their flower coloration for attracting pollinators. The coloration of flowers is due to the combined effect of pigments and light-scattering structures. To interpret flower coloration, we applied an optical model that considers a flower as a stack of layers, where each layer can be treated with the Kubelka-Munk theory for diffusely scattering and absorbing media. We applied our model to the flowers of the Chilean Bellflower, Nolana paradoxa, which have distinctly different-colored adaxial and abaxial sides. We found that the flowers have a pigmented, strongly scattering upper layer, in combination with an unpigmented, moderately reflecting lower layer. The model allowed quantitative interpretation of the reflectance and transmittance spectra measured with an integrating sphere. The absorbance spectrum of the pigment measured with a microspectrophotometer confirmed the spectrum derived by modeling. We discuss how different pigment localizations yield different reflectance spectra. The absorbing layer stack model aids in understanding the various constraints and options for plants to tune their coloration

    Coloration principles of the Great purple emperor butterfly (Sasakia charonda)

    Get PDF
    The dorsal wings of male Sasakia charonda butterflies display a striking blue iridescent coloration, which is accentuated by white, orange-yellow and red spots, as well as by brown margins. The ventral wings also have a variegated, but more subdued, pattern. We investigated the optical basis of the various colors of intact wings as well as isolated wing scales by applying light and electron microscopy, imaging scatterometry and (micro)spectrophotometry. The prominent blue iridescence is due to scales with tightly packed, multilayered ridges that contain melanin pigment. The scales in the brown wing margins also contain melanin. Pigments extracted from the orange-yellow and red spots indicate the presence of 3-OH-kynurenine and ommochrome pigment. The scales in the white spots also have multilayered ridges but lack pigment. The lower lamina of the scales plays a so-far undervalued but often crucial role. Its thin-film properties color the majority of the ventral wing scales, which are unpigmented and have large windows. The lower lamina acting as a thin-film reflector generally contributes to the reflectance of the various scale types
    • ā€¦
    corecore